
Int. J. Multiphase Flow Vol. 18, No. 6, pp. 1045-1059, 1992 0301-9322/92 $5.00 + 0.00 
Printed in Great Britain Pergamon Press Ltd 

E X T E N S I O N A L  M O T I O N S  O F  S P A T I A L L Y  

P E R I O D I C  L A T T I C E S  

A. M. KR AYNIK l and D. A. REINELT 2 

~Energetic Materials & Fluid Mechanics, Dept 1512, Sandia National Laboratories, Albuquerque, 
NM 87185, U.S.A. 

2Department of Mathematics, Southern Methodist University, Dallas, TX 75275, U.S.A. 

(Received 13 March 1992; in revised form 15 July 1992) 

Abstract--The behavior of microrheological models for multiphase fluids that have spatially periodic 
structure depends on certain kinematic properties of the unit cell. Anomalous results associated with 
identical objects approaching too closely during the flow can be reduced if not eliminated by satisfying 
lattice compatibility conditions. This is straightforward for simple shearing flow but subtle for extensional 
flows. Using the connection between lattice compatibility and lattice reproducibility (periodic lattice 
behavior with the flow) we establish sufficient conditions for compatibility of arbitrary lattices in planar 
extensional flow. Detailed results for square and hexagonal unit cells include: initial orientations for 
periodic behavior; strain periods; and minimum lattice spacings D. We identify the orientation of a square 
unit cell that leads to periodic behavior (with the minimum period) and the largest D of any lattice in 
planar extensional flow. We show that no lattice exhibits periodic behavior in uniaxial extensional flow 
(or biaxial extensional flow) even though Adler & Brenner have established the existence of compatibility. 

Key Words: compatibility, extensional flow, lattica, microrheology, planar extension, periodicity, spatially 
periodic, unit call 

I N T R O D U C T I O N  

One familiar approach to developing rheological models for multiphase fluids involves following 
the detailed evolution of the fluid microstructure with the flow. This deterministic method is often 
applied to concentrated particulate suspensions (Adler et  al. 1985; Brady & Bossis 1988), foams 
and emulsions (Weaire & Fu 1988; Reinelt & Kraynik 1990; Kraynik 1988; Herdtle 1991), granular 
media (Bashir & Goddard 1991) and other systems. When modeling bulk rheological behavior, 
as opposed to boundary conditions such as slip at the wall, one often considers idealized situations 
where unbounded multiphase fluids undergo homogeneous shearing flows. The detailed analysis 
for specific multiphase fluids usually involves numerical simulation, especially when the dispersed 
phase is neither dilute nor arranged in a perfectly ordered manner. Practical limitations on ever 
increasing but finite computational resources are resolved by adopting a spatially periodic 
description of the fluid microstructure. This focuses attention on structure evolution within a unit 
cell that changes shape according to the imposed macroscopic flow. The obvious advantages of 
spatially periodic models include rigorous mathematical formulation and tractability. However, 
the imposed order can be a serious drawback, especially when the physical systems of interest are 
inherently disordered or the predictions depend strongly on the choice of unit cell. 

Because the rheology of multiphase fluids can be highly nonlinear, behavior in extensional flows 
can be dramatically different from behavior in simple shearing flow. However, most rheological 
studies that involve steady flow of spatially periodic systems only consider simple shearing flow. 
In this well-understood situation, the undisturbed streamlines are straight; the kinematics of a unit 
cell are easy to visualize; and, it is particularly obvious---if not taken for granted--how to choose 
a convenient unit cell. By contrast, for isochoric extensional flows, not only are streamlines curved, 
in general, but "natural" choices of the unit cell lead to serious problems that are discussed below. 
In this investigation we focus on the formulation of spatially periodic models for extensional flows. 
We will show that planar extensional flow is particularly convenient to analyze because the shape 
of certain unit cells evolves periodically in time. More importantly, this periodicity guarantees the 
existence of a compatibility condition, which is necessary to reduce, if not eliminate, artifacts 
associated with a spatially periodic formulation. 
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Figure 1 shows the idealized structure of a two-dimensional, spatially periodic foam with 256 
bubbles in the unit cell. We show this example to emphasize that a structure can be spatially 
periodic on large length scales and still possess significant disorder on smaller length scales. 
The results of the current analysis for planar extensional flow can be used to prevent the formation 
of spatially periodic structures with short-range order from systems where the order was originally 
only long ranged. When modeling disordered systems, it is very important to keep identical objects 
well separated for all time. 

The idealized geometry of a spatially periodic model is specified in terms of a lattice with basis 
vectors that define the edges of a representative unit cell. For homogeneous macroscopic flows, 
the motion of the lattice points, the underlying basis vectors, and the shape of the unit cell are 
completely determined through affine kinematics. As a result, many conditions that must be 
satisfied for a spatially periodic model of a flowing system to be viable are purely kinematical in 
nature. For example, to completely avoid overlap of rigid spheres in suspension the minimum 
separation D of all lattice points, which are occupied by identical image particles, must exceed the 
maximum particle diameter d, as discussed by Adler & Brenner (1985). By contrast, deformable 
particles like the bubbles in foam or the drops in concentrated liquid-liquid emulsions, can change 
shape to prevent image particles from overlapping. However, their shape will be highly exaggerated 
when D ,~ d, where d refers to the undisturbed particle diameter. More subtle influences of imposed 
order on the behavior of a spatially periodic multiphase fluid are expected to diminish when D ~> d. 
Because the minimum lattice spacing D strongly influences the response of a spatially periodic 
model, it is important to understand how D depends on the lattice and the flow. 

Other useful properties of spatially periodic models, which have been described by Adler & 
Brenner (1985), are easily understood by considering the situation for simple shearing flow that 
is shown in figure 2. The structure of a suspension of monodisperse, rigid disks is initially 
specified on a square lattice aligned with the axes of a Cartesian coordinate system. For simple 
shearing flow parallel to the X-axis, it is easy to determine the instantaneous position and relative 
separation of the particle centers, which occupy lattice sites. This lattice exhibits reproducibility or 
strain periodicity because it repeats itself periodically with deformation. This lattice also exhibits 
compatibility with the flow because particles of finite size never collide or overlap. A square lattice 
with this particular orientation permits the largest concentration of monodisperse disks without 
overlap during simple shearing flow; the maximum area fraction is ¢~* = ~z/4 ,~ 0.7854. This result 

Figure 1. Idealized structure of a two-dimensional, spatially periodic foam with 256 bubbles in a 
representative unit cell defined by two basis vectors. Even though bubbles associated with the corners of 
the unit cell are identical, the structure in the vicinity of any bubble lacks obvious order. Adapted with 

permission from Herdtle (1991). 
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can be expressed without reference to suspended particles by saying that the minimum lattice 
spacing D has a maximum value of D* = v/-A, where A is the area of the unit cell. A lattice is 
compatible with the flow when D/x/-A is finite. There are, in fact, an infinite number of lattices 
that are compatible with simple shearing flow, and, D/x/~ can be very small. The necessary 
and sufficient condition for compatibility of a two-dimensional lattice (with arbitrary linearly 
independent basis vectors) in simple shear is easy to envision: the set of lines that contains all 
lattice points and is parallel to the flow direction must have a finite spacing. This spacing is 
uniform and equals D. The same condition also implies reproducibility in simple shearing flow. 
This strain periodic behavior is extremely convenient when specifying the evolution with flow of 
the representative basis vectors and the unit cell. 

To analyze the behavior of spatially periodic systems in extensional flow, it is necessary to satisfy 
compatibility conditions. To illustrate the problem, consider an example for isochoric planar 
extensional flow, which is shown in figure 3 and does not have the desirable attributes of the 
simple shearing case discussed above. When the particles, no matter how small, are aligned with 
the stretching direction, they eventually collide so the lattice is incompatible with the flow. 
Furthermore, a square lattice with this initial orientation is not reproducible. In the following 
sections, we will show that it is possible to specify unit cells that are both compatible and 
reproducible in planar extensional flow--this result is not intuitively obvious. 

Using theoretical arguments based on the geometry of numbers, Adler & Brenner (1985) 
investigated compatibility for two-dimensional hyperbolic flows. For the special case of isochoric 
planar extension, D has a maximum value of D */x/~ = (4/5) ~/4 ~ 0.9457, which is only slightly less 
than 1--the corresponding value for simple shearing flow. Even though compatibility was 
established, the existence of reproducibility was overlooked. 

While investigating the rheology of perfectly ordered, two-dimensional foams, Kraynik & 
Hansen (1986) recognized that regular hexagonal lattices can be reproduced in planar extension. 
That discovery motivated this study of lattice reproducibility for extensional flows. As in the 
case of simple shearing flow, reproducibility is important because it guarantees compatibility. 
Reproducibility is also convenient because the time evolution of the basis vectors and the unit cell 
is simple. In contrast with simple shear, compatibility does not imply reproducibility in planar 
extension. This is illustrated by counterexample in the appendix provided by Ernest F. Brickell. 

In the next section, we investigate existence conditions for reproducibility in general three- 
dimensional extensional flow, which includes planar extension, uniaxial extension and biaxial 
extension as special cases. Adler (1984) has established compatibility conditions for uniaxial 
extensional flow and shown that D*a/v --- x/~/23,  where V is the volume of the unit cell. In view 
of the fact that compatibility has been established, our finding that no lattice is reproducible in 
uniaxial extensional flow is unexpected. 

EXISTENCE OF REPRODUCIBILITY FOR EXTENSIONAL FLOWS 

To investigate conditions for reproducibility in extensional flow, we construct an arbitrary 
three-dimensional lattice consisting of all the points 

R e = n l b  I q- n 2 b  2 -I- n 3 b 3 ,  [l] 

where b~, b2, b 3 are linearly independent basis vectors and n = {n~, n2, n 3} is any set of integers. 
We consider all homogeneous, isochoric, extensional motions of the lattice. The time evolution of 
the basis vectors satisfies 

dbt 
d--t = Db. [2] 

where D is a constant diagonal matrix with 

tr D = D~ + D: + D3 = 0. [3] 

In terms of the initial basis vectors b °, we get 

b~ = A b~, [4] 
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where the matrix A = cxp Dt and det A = 1. For  a given A, a lattice is reproducible if and only 
if there exist integers N~j such that 

Ab ° = N,I b° + Nt2 b° + N,3b °, [5] 

for i = I, 2, 3. These vector equations can bc rewritten in the form 

(N - 2,1)e~ = 0. [6] 

Here, N is an integer matrix composed of elements N U, I is the identity matrix and 2~ = cxp D~ t. 
The vector c~ contains the ith components of the basis vectors b°; equivalently, if b ° arc the column 
vectors of a matrix, then c~ are the row vectors. The problem has been reduced to an cigenvalue 
problem for ~.~ with corresponding cigenvectors e~. 

Before examining this problem, wc note that the matrix D in [2] can bc replaced by any 
diagonalizablc constant matrix A that has real cigenvalucs and tr A = 0. This matrix can bc 
factored into A = SDS -I, where the column vectors of S are the eigcnvectors of A and the 
diagonal elements of D are the corresponding cigenvalues. The only difference would be that b ° 
in [5] would be replaced by S-Ib°; thus, cj in [6] would now contain the ith componcnts of these 

new vectors. 
Returning to the cigcnvaluc problem given in [6], wc sec that the cigcnvalucs 2~ arc the roots of 

the characteristic polynomial 

p ( x )  = x 3 - k x  2 + m x  - 1 = 0, [7] 

where 

k = 21 --[- 2 2 --[- ~,3 • tr N = Nit + N22 "Jr" N33, 

1 1 1 
rrt ----- ~ -{- ~22 -{- ~33 ---- NIl  N22 - -  NI2N21 -[- N22N33 - N23N32 -[- N33NII - N3! NI3, 

1 = •l ~2'~'3 = d e t  N .  [8] 

Using the last equation, which follows from our restriction to isochoric deformations, we 
minimize k and m subject to 2i > 0 and find that k >t 3 and m >/3. The trivial case when there is 
no deformation of  the lattice corresponds to k = m = 3 and A = I. Excluding the trivial solution, 
we search for integers k and m for which there exist lattices that are reproducible. 

In the planar extension case, the roots of  the polynomial are 2, l/A, and I. Substituting these 
expressions into [8] we find that k = m and 

2 + 1  = k - 1, [9] 
Z 

where  k = 4, 5, 6 , . . . .  So lv ing  for 2, we  get 

(k - 1) + x / ( k  - 1) 2 - 4 
2 

2 
[10] 

The other root of [9] corresponds to I/2. 
Wc have now found a discrete set of strain periods 2 for which there exist lattices that exhibit 

periodic planar extensional flow. No other values of 2 will give periodic planar extensional flow. 
This is very different from simple shearing flow where there exist lattices with arbitrary strain 
periods. To illustrate this situation, consider a rectangular lattice aligned with the X and Y axes. 
If the lattice has length d in the X direction and unit length in the Y direction, then the strain period 
for simple shearing flow parallel to the X axis is just d, which is arbitrary. 

In the general extensional flow case, wc scck integers k and m such that the three roots of 
the cubic equation are real and positive. We observe that if 21, 22, 23 is a solution of [8] for a 
specific k and m, then I/21 , I/22, 1/23 is also a solution of the same equations when k and m arc 
interchanged. This means that the domain of allowable integers k and m is symmetric across the 
line k = m; thus, wc restrict ourselves to the case k < m. 
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Figure 4 is a graph of the cubic equation [7]. We note that p(0) = - 1 and p(1) = m - k > 0 as 
shown. The curve has a local minimum at 

k + x / ~ -  3m 
x0 = 3 [11] 

Unless k 2 >  3m and r n : >  3k (from the symmetry between k and m), the polynomial will be 
monotone  and there will only be one real root. The local minimum value is 

km 2 3m)(k  ~ ) 1 .  [12] p(xo) = -~- - ~-~ (k 2 -  + - 

The cubic polynomial will have three real roots if p ( x 0 ) ~  0. 
When p(xo)= 0, there is a simple root less than one and a double root greater than one; 

this corresponds to biaxial extensional flow. We get the opposite case corresponding to uniaxial 
extensional flow when m < k and the local maximum value equals zero. Asymptotically, we find 
that m must be proport ional  to k 2 in order that p(xo) ~ O. In fact, if we substitute m = k2/4 
into [12], we get exactly p(xo) = - 1. We describe this solution as near biaxial extensional flow; 
the roots of  the cubic equation are 

4 
x ~ - ~  and x ~ _ +  a s k ~ .  [13] 

The roots of  [7] corresponding to near uniaxial extensional flow can be found by replacing k by 
m in [13] and taking the reciprocal of  each root. 

We now show that the curve rn = k2/4 provides an upper bound on a set of  allowable 
integers k and m; from symmetry, the curve k = rn 2/4 provides the lower bound. By substituting 
m = k2/4 + q into [12], we get 

k 3 4q p ( X o ) = ~ { ( l + - ~ ) - ( 1 - 1 2 q ' ~ F 2 + ~ / l  12qT~ 
k2 jL 3 - - - ~ - _ [ j  - I .  [ 1 4 ]  

For  rn to be an integer, we require that 

Sinteger k even; [15] 
q = -~3 + integer k odd. 

w 

p(x) 

X 

Figure 4. Graph of a typical cubic equation [7] with k < m. 
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We first note that when q = 0 in [14], we get p(xo)= - 1  as discussed above. When q < 0 
both terms within the braces decrease; thus, p(Xo)< - 1  and there are three real roots. When 
q > 0 both terms within the braces increase, which gives p(xo)> - 1 ,  but because the term in 
brackets is always < 1, we have 

k 3 { ( 4 q )  ( _ 1 2 q ~  
p(x0)>~-~ 1+~-  i - 1 k 2 ] j - l = ~ k q - l > ~ O .  [16] 

This last inequality results from k t> 3 and q I> 3/4, which follows from [15]. Because p(xo)> 0, 
the cubic equation only has one real root. Therefore, the curve m = k2/4 provides a boundary 
between integer pairs (k, m) that are allowed and those that are not. We emphasize that no integer 
pairs give p (Xo) = O. 

It should also be pointed out that having determined an allowable integer pair and the 
corresponding roots, we can construct many different integer matrices N that satisfy [8]. For 
example, (, 0 !:) 

N =  k - m  1 k • [171 

k - 3  1 k 

The corresponding eigenvectors for this matrix and the basis vectors for the lattice can then be 
determined; thus, finding an allowable integer pair is a necessary and suflicient condition to insure 
the existence of  a reproducible lattice. 

In summary, there exist lattices that are reproducible for each of the extensional flows defined 
by the integer pairs (k, m) that lie in the region m <~ k2/4 and k <~ m2/4 (see figure 5). Integer pairs 
that lie on these curves correspond to near biaxial and near uniaxial extensional flows, respectively. 
Secondly, it is impossible to find a lattice that is reproducible in biaxial or uniaxial extensional flow. 

R E P R O D U C I B L E  LATTICES IN P L A N A R  E X T E N S I O N A L  FLOW 

In the last section, we determined a discrete set of strain periods for which there exist lattices 
that are periodic in planar extensional flow. We now construct integer matrices N that correspond 

20 

10 

10 20 
7r~ 

Figure 5. Integer pairs for which there exist lattices that are reproducible (strain periodic) in extensional 
flow. Solutions that  lie on the boundaries of  the region correspond to near uniaxial and near biaxial 

extensional flow. 



1052 A.M.  KRAYNIK and D. A. REINELT 

to a specific lattice and strain period. The two-dimensional lattice is defined in terms of  the ratio 
of  lengths of  the basis vectors, a, and the angle between the basis vectors 4~, where 0 < 4~ < re. These 
basis vectors can be written as 

bj = (cos 0, sin 0), b2 = a(cos(0 + q~), sin(0 + ~b)), [18] 

where 0 is the orientation angle of the lattice. The square and hexagonal lattices that are examined 
more closely in the next section correspond to a = 1 and either q5 = rt/2 or ~b = zr/3, respectively. 

As given in [6], the components of  the basis vectors must satisfy 

N2, N22 - 2 a cos(0 + ~b) 

and 

IN,, ~ N,2 IF sin0÷q~) 1 
N2, N22- JL a sin(0 = I ~ l "  

[19] 

[20] 

Since the matrices in the previous two equations are singular, it is sufficient to satisfy the first 
equation in each linear system; the second equations are redundant. Solving for tan 0 in these two 
equations, we not only get an equation for the orientation angle 0, but also get a relationship 
between a, ~b and the integer matrix N: 

tan 0 = N~, - 2 + Nl2a cos ~b 
N,2a sin ~b 

The last equation simplifies to 

a2Nl2 + (Nil -- N22)a cos q~ -- N21 = O, 

using 

det N = N, lN22 - N,2N2, = 1 

and 

- N , 2 a  sin 4~ 
1 

Nit - -~ + N12a cos q~ 
[21] 

[22] 

[23] 

1 
tr N = Ni, + N22 = k = 2 + ~, [24] 

where k = 3, 4, 5 . . . . .  We note that when we considered planar extension as a special case of the 
three-dimensional problem [9], we got k - 1 instead of k in the previous equation. Here, we simply 
used k and have adjusted the integer values of  k accordingly. 

For a given lattice defined by a and tk and a strain period specified by k, the lattice will be 
reproducible if we can find integers Nij satisfying [22]-[24]. To determine if there are any solutions 
to this problem for the given parameters, we combine the last three equations into a single equation 
for Nil and N12: 

k ( N l l - k ) 2 ÷ 2 a c o s ~ p ( N i l  ~ )  Nt2 k2 - + a2N~2 = -~- - 1. [25] 

The graph of this equation is an ellipse in the ( N , ,  Na2) plane centered at (k/2, 0). The major and 
minor axes of  the ellipse are not aligned with the Nl, and N,: axes unless ~b = n/2. By determining 
the points at which the ellipse has a vertical tangent, we can easily find an explicit range for Nn 
in terms of  the given parameters. For each integer in this range, we determine Nl2 by solving the 
quadratic equation [25]. If N,2 is an integer, we determine N22 from [24] and N21 from [22]. If  NEt 
is also an integer, we have found a solution. 

The orientation angle of the strain periodic lattice is determined from [21]. This angle is related 
to the graph of  the ellipse in the following way. First we note that the ellipse intersects the N,I 
axis at (1/2, 0) and (2, 0) and that the ellipse lies in between the two tangent lines passing through 
these points (see figure 6). These tangent lines give us the following inequalities: 

Nl~ -- 1/2 + N,za cos ~b t> 0 [26] 
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10 

Nx 

Figure 6. Graph of  [30] when k = 16. Tangent lines through (1/2, 0) and (2/0) are also shown. 

and 
Nu - 2 + Nt2a cos ~b ~< 0. [27] 

Equality corresponds to the tangent line equations. Second, we note that these exact terms 
appear in [21] and that the sign of  the orientation angle 0 is opposite the sign of  Nt2. Furthermore, 
as we move along the ellipse in the upper half plane corresponding to N~2 >I 0 (see figure 6), the 
orientation angle 0 varies from - r r /2  at (1/2, 0) to 0 at (2, 0). Similarly, in the lower half plane 
0 varies from 0 at (2, 0) to n/2 at (1/2, 0). Due to the symmetry of  a given lattice, we may only 
be interested in a certain range of  orientation angles; the above information will allow us to further 
restrict the range of  NH values that we need to examine. 

S Q U A R E  AND H E X A G O N A L  LATTICES IN P L A N A R  
E X T E N S I O N A L  FLOW 

The square lattice corresponds to a = 1 and ~b = n/2. In this ease, [25] reduces an equation for 
a circle, 

N,, -- + N~2 = ~- -- 1, [281 

and [22] reduces to N~ = N~2. Due to the symmetry of  the lattice, we are only interested in 
orientation angles satisfying 0 ~< 0 ~< 7t/4. These angles correspond to the lower right portion of  the 
circle, where 

k k x/k ~ - 4  and Ni2~<0. [29] 
2 ~ < N u ~ < 2 = 2  -t 2 

For each integer Nu in this range, we solve for Nt2 using [28]. If  N~2 is an integer, then we 
have found an integer solution as both N2~ and N~ will also be integers. The orientation angle 
is determined from [21]. Table 1 gives the value of  k, the Heneky strain ~ = In 2, the orientation 
angle 0 and integers N~j for strain periods in the range 0 < ¢ < 4. Once an allowable orientation 
angle and strain period have been determined, there will be other solutions that have the same 
orientation angle and integer multiples of  the strain period. In the range discussed above, there 
are solutions of  this type at k = 7, 18, 34 and 47 that are not shown in the table. Even with these 
additional solutions, there are many values of k for which the square lattice does not have an 
orientation that is periodic. 
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Table 1. Strain periodic orientations for a square lattice in planar extensional flow 

k E = In 2 0 N n NI2 N21 N22 D a 4~ 

3 0.962424 0.553574 2 - 1 - 1 1 0.945742 0.702481 
6 1.762747 0.392699 5 - 2  - 2  1 0.840896 0.555360 

11 2.389526 0.294001 10 - 3  - 3  1 0.744782 0.435661 
15 2.703576 0.613886 10 - 7  - 7  5 0.820166 0.528316 
15 2.703576 0.368908 13 - 5  - 5  2 0.820166 0.528316 
18 2.887271 0.231824 17 - 4  - 4  1 0.668740 0.351241 
27 3.294462 0.653901 17 - 13 - 13 10 0.721073 0.408365 
27 3.294462 0.273394 25 - 7  - 7  2 0.721073 0.408365 
27 3.294462 0.190253 26 - 5  - 5  1 0.609418 0.291690 
38 3.636893 0.624523 25 - 18 - 18 13 0.795271 0.496729 
38 3.636893 0.160875 37 - 6  - 6  1 0.562341 0.248365 
39 3.662904 0.530602 29 - 17 - 17 10 0.817034 0.524289 
39 3.662904 0.365453 34 - 13 - 13 5 0.817034 0.524289 
43 3.760659 0.679851 26 - 2 1  - 2 1  17 0.647347 0.329128 
43 3.760659 0.216204 41 --9 - 9  2 0.647347 0.329128 
51 3.931441 0.139150 50 --7 - 7  l 0.524138 0.215765 

"These lengths are based on a square lattice with basis vectors of unit length. 

The hexagonal lattice corresponds to a = 1 and 4~ = n/3. In this case, [25] reduces to 

k s 
( N i l - k ) 2 + ( N l l - - k ) N 1 2 + N 2 2 = - - -  ~ - 1. [30] 

The major axis of  the ellipse is at an angle of  -7r /4 with respect to the horizontal Nn axis 
(see figure 6). Due to the symmetry of  the hexagonal lattice, we are only interested in orientation 
angles satisfying 0 ~< 0 ~< rr/6. The portion of  the ellipse satisfying these orientation angles is 
given by 

2=k2_j x//-~_2-4~NH..<k_Fx//~-7-4 
x/~ [31] 

The first inequality follows from [21] and 0 ~< 0 -N< n/6; the second inequality just states that N .  
is less than or equal to its maximum value which occurs at the point where the graph has a vertical 
tangent. Even when k is as large as 100, there will only be 8 values of  Nil that satisfy [30] and need 
to be examined. In addition, k must be an even integer or N:~ will not be an integer. This result 
follows from [221 and [24], which give 

k 
N21 = Ni l  + NI2 2"  [32] 

Therefore, for each even integer k, we determine integers N ,  satisfying [31] and then 
solve [30] for N~:. If  N~2 is an integer, we have found a solution. These solutions occur in pairs 
and were called periodic pairs by Kraynik & Hansen (1986). We note that if (Nil, Nl2, N:~, N22) 
is an integer solution of  [22]-[24] for the hexagonal lattice (a = 1 and 4~ =n /3 ) ,  then 
(NH, - N : I ,  -N~2, N2~) is also a solution. Graphically, they correspond to the two roots of  the 
elliptic equation at a given value of  NH. In addition, if 0 is the orientation angle of  the first solution, 
then it can be shown that r e / 6 -  0 is the orientation angle of  the second solution. These two 
solutions correspond to the largest value of  Nil, as shown in figure 6. The solutions outside the 
range of  interest are also shown; they correspond to the above two orientation angles plus integer 
multiples of  re/6. 

Table 2 gives the results for a hexagonal lattice with strain periods in the range, 0 < E < 5. 
Only the first half of  the pair is given in the table. The first solution in the table, given by k = 4 
and 0 = n/12, is a degenerate solution (both solutions in the pair are identical) and corresponds 
to the point on the ellipse where the graph has a vertical tangent. There are additional solutions 
with this same orientation angle at k = 14 and 52 that are not shown; they correspond to 2 and 
3 times the strain period given. 
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Table 2. Strain periodic orientations for a hexagonal lattice in planar extensional flow 
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k e = In ). 0 Nn Nt2 N2t N22 D a 4~ 
4 1.316958 0.261799 4 - 1 1 0 0.707107 0.453450 

16 2.768659 0.166737 17 - 3  6 - 1 0.572125 0.296853 
40 3.688254 0.109256 42 - 5  17 - 2  0.465594 0.196595 
40 3.688254 0.224217 43 -10  13 - 3  0.658449 0.393191 
50 3.911623 0.140517 53 - 8  20 - 3  0.526640 0.251529 
76 4.330560 0.080136 79 - 7  34 - 3  0.399482 0.144729 
76 4.330560 0.162428 81 -14  29 - 5  0.564954 0.289457 

110 4.700398 0.095063 115 -12  48 - 5  0.434721 0.171388 
124 4.820217 0.063032 128 - 9  57 - 4  0.354584 0.114024 
124 4.820217 0.127094 131 - 18 51 - 7  0.501457 0.228048 
146 4.983560 0.220653 157 -36  48 -11 0.653545 0.387356 
148 4.997167 0.211032 159 -35 50 -11 0.540928 0.265361 

"These lengths are based on a hexagonal lattice with basis vectors of unit length. 

M I N I M U M  L A T T I C E  S P A C I N G  D D U R I N G  P L A N A R  
E X T E N S I O N A L  F L O W  

The  reproducibi l i ty  o f  a lattice guarantees  compatibi l i ty ,  the existence o f  a finite m i n i m u m  
spacing D o f  all lattice points  dur ing flow. In  p lanar  extension all lattice points  away  f rom the origin 
follow hyperbol ic  pa ths  given by 

d 2 
x y  = xoYo = + ~ ,  [33] 

where  (x, y )  are the coordinates  o f  any  lattice point ,  the subscript  0 refers to initial posi t ion and 
d is the m i n i m u m  distance f rom the origin to the hyperbola .  Expressing d in terms o f  the initial 
lattice pa ramete r s  defined by [18] and the integer lattice coordinates  n; defined by [1] gives 

d 2 =  2l[nl cos 0 + n2a cos(0 + ~)][nl sin 0 + n2a sin(0 + 4)]1. [34] 

Given  a and  ~b, a reproducible  lattice mus t  satisfy [22]-[24] for  integer k and Nij. Using these 
integers, the or ienta t ion angle 0 is obta ined  f rom [21]. The  m i n i m u m  lattice spacing D, the smallest  
value o f  d for  all lattice points,  can be expressed as 

D = m i n d .  [35] 
{nl,n2} 

F o r  square  lattices, 

d 2 = 12nln2 cos 20 + (n~ - n~) sin 201, [36] 

where  0 is given by 

tan 0 = Nn - 2 
NI2 ' [37] 

the value of  2 comes  f rom [29], and 0 ~< 0 ~< rr/4. Because o f  reproducibil i ty,  the minimizat ion  in 
[35] over  an infinite set {nl, n2 } reduces to searching a finite n u m b e r  o f  integer pairs.  In table 1 
we show D for  the reproducible  initial lattice or ientat ions 0. 

The  or ienta t ion o f  a square lattice tha t  maximizes  D corresponds  to the first entry in table 1 with 
tan 0 given by the "go lden  ra t io"  

tan 0 = ~ /~  - 1 [38] 
2 

and 

D = ( 4 )  '/'. [39] 

Adler  & Brenner  (1985) have shown tha t  this is the largest value of  D for  p lanar  extensional  
flow. Because o f  this, the square lattice with or ienta t ion given by [38] is called a cr i t i ca l  la t t ice .  

In figure 7 we show the critical lattice in the initial condi t ion and follow its evolut ion with H e n c k y  
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strain E over one period. Notice that when the lattice is in the deformed state that determines the 
minimum spacing, circles of diameter D touch and form parallel chains that are uniformly spaced. 
The area fraction • of these circles is given by 

n D  2 
¢~ = - -  [ 4 0 ]  

4 A '  

where A = [bt x b21 is the unit cell area. For a square lattice the maximum value of ~, which 
corresponds to [38], is 

/ - -  

_ [41] 
10 

The hexagonal lattice is useful when describing the equilibrium structure of perfectly ordered 
two-dimensional foams (Kraynik & Hansen 1986; Reinelt & Kraynik 1990). The same procedure 
as above determines D for regular hexagonal lattices. The minimum lattice spacing is maximized 
when 0 = n/12, giving 

D = t42] 
4 

and 

= roY - .  [43] 
12 

Values of D and • for other strain periodic orientations of the hexagonal lattice are contained in 
table 2. 

CONCLUDING REMARKS 

The predictions of microrheological models that are based on a spatially periodic formulation, 
can depend very strongly on the kinematics of the unit cell in the particular flow of interest. 
Compatibility of the lattice with the flow guarantees that identical lattice objects with a maximum 
dimension d that is smaller than the minimum lattice spacing D will n e v e r  overlap. It is important 
to satisfy a stricter condition, d ,~ D, when modeling the behavior of disordered systems. In contrast 
with simple sheafing flow, it is not intuitively obvious how to satisfy these conditions for 
extensional flows. 

In this analysis, we have identified compatibility conditions for arbitrary lattices in planar 
extensional flow by establishing reproducibility, the periodic behavior of the lattice with the flow. 
Equations [22]-[24] determine reproducibility conditions for an arbitrary lattice. Finding solutions 
to these equations can involve searching large numbers of integers and be quite tedious. This is 
in sharp contrast with the situation for simple shearing flow where one can guarantee compatibility 
and reproducibility by merely aligning either basis vector of the lattice with the flow direction. 
We have considered two special cases, square and regular hexagonal lattices, and calculated several 
initial orientation angles and strain periods for planar extension. A square lattice with a particular 
orientation angle that is related to the golden ratio, tan 0 = (x/~ - 1)/2, has the smallest period 
and the largest minimum lattice spacing D = (4/5) TM ~ 0.9457 of any lattice. This value of D is only 
slightly smaller than the maximum value for simple shearing flow: D = 1. 

When the physics of the problem does not dictate the geometry of the lattice, a square unit cell 
oriented according to the golden ratio will usually represent the best choice for planar extension 
because D is maximized. This choice is not appropriate for a perfectly ordered, two-dimensional 
foam, which requires a regular hexagonal lattice. 

We have shown that no lattice is reproducible in either uniaxial extensional flow or biaxial 
extensional flow, even though Adler & Brenner (1984) have established the existence of 
compatibility. Thus, our approach to identifying compatibility conditions does not apply to these 
flows. The appendix shows by counterexample that compatibility does not imply reproducibility 
for planar extensional flow, as it does for simple shearing flow. 
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Reproducibility is convenient when developing a spatially periodic model but certainly not 
necessary. In its absence, one can, in principle, establish the strict compatibility condition that 
we have discussed, by other means. However, in the absence of strict compatibility, which 
refers to the minimum value of D for all time, one can just examine D over finite time intervals. 
This would provide an assessment of whether or not lattice points approach too closely during a 
flow of  finite but not necessarily small duration. The important thing is to ensure that predictions 
are not influenced too strongly by the lattice geometry associated with a spatially periodic 
formulation. 
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APPENDIX 

This appendix gives an example that shows that compatibility does not imply reproducibility 
for planar extensional flow. This example is due to Ernest F. Brickell of Sandia National 
Laboratories. 

Let 0 = ( x / ~ -  1)/2 (the golden ratio). 
We will use several facts from number theory that can be found in standard number theory 

texts. The theorem and page numbers below refer to Hardy & Wright (1979). For n >/1, let 
p~/q~ be the rational number that is the n th convergent in the continued fraction expansion of 0. 
These convergents satisfy: 

1. If n > 1 and if p and q are integers such that 0 < q ~< qn and 

P P~ 
q q~' 

then [p, - q,O I < [P - qO [. (Theorem 182) 

2. qn ~< 2qn_ 1. (P. 163) 
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1 
3. Iq~O -P~I >1 ~-q:q . 

On 163, it is shown that p. 

Iq~O - p . I  = 

But  

1 

q ~ ( l + 0 + q n - t ~ ' q ,  / 

l +O + qn-l < 2  < 3 . )  

Let L be the lattice generated by the vectors v = (1, - 1) and w = (6 + 0, 6 + 0). The following 
theorem will show that L is compatible but not periodic since any vector u (0)=  (x(0), y(0)) in L 
will follow a curve u ( t ) =  ( x ( t ) , y ( t ) )  in the extensional flow that satisfies x ( t ) y ( t ) =  x(0)y(0). 

Theorem 1 

The only vectors (x, y )  in L that satisfy Ixy l ~ 1 are the vectors (0, 0), (1, - 1 )  and ( - 1 ,  1). 

Proof. Any vector in L can be written as (q(6 + 0) + p ,  q(6 + 0) - p )  for integers p and q. For 
q = 0, the vector (p, - p )  satisfies p2 ~< 1 iffp = 0, 1 or - 1. Suppose now that q # 0. By symmetry, 
we can assume that q > 0 and p I> 0. Let n be the integer such that qn- 1 < q ~< q~. Then 

I(q(6 + 0) + p ) ( q ( 6  + 0) - P ) I  i> I(q(6 + 0) +P) I  I(q(6 + 0) - P ) I  

>/I(q(6 + 0) +p)llqnO -p~l  

1 
> / l ( q ( 6 + 0 ) + p ) l - -  

3qn 

~>q_ 6 + 0  
q~ 3 

6 + 0  
6 

>1 .  
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